Kinematics

Kinematics describe geometrical aspects of motion regardless of how motion is created.

Vector Magnitudes

Magnitudes in mechanics are vectors in a 3-dimensional space: Position, Velocity, Acceleration, Force, Torque, etc. We will denote such quantities by u,v,w\vec{u}, \vec{v}, \vec{w} Addition:

w=u+vv=au\begin{aligned} \vec{w} & =\vec{u}+\vec{v} \\ \vec{v} & =a \vec{u} \end{aligned}

Basis

A basis is a maximal set of linearly independent vectors. In the Euclidean three-dimensional space, every basis has 3 vectors:

{a}{a1,a2,a3}\{a\} \equiv\left\{\vec{a}_1, \vec{a}_2, \vec{a}_3\right\}

Vectors can then be expressed as a linear combination of the elements of a basis:

u=u1aa1+u2aa2+u3aa3\vec{u}=u_1^a \vec{a}_1+u_2^a \vec{a}_2+u_3^a \vec{a}_3

Basis & Coordinates

Once we express a vector magnitude using a basis, we can represent it as a column matrix:

u=u1aa1+u2aa2+u3aa3ua=[u1au2au3a]\vec{u}=u_1^a \vec{a}_1+u_2^a \vec{a}_2+u_3^a \vec{a}_3 \equiv \mathbf{u}^a=\left[\begin{array}{c} u_1^a \\ u_2^a \\ u_3^a \end{array}\right]

Note:

  • The matrix representation is always related to a basis. This will be denoted by a right superscript.

  • Vector magnitude equations hold independent of the basis used to represent the vectors.

  • It is convenient to derive vector equations independent of any basis.

  • The matrix representation then allows us to make calculations and write computer programs, but they depend on a basis.

Examples

  • Inner product

    uv(ua)va=[u1au2au3a][v1av2av3a]\vec{u} \cdot \vec{v} \quad \equiv \quad\left(\mathbf{u}^a\right)^{\top} \mathbf{v}^a=\left[\begin{array}{lll} u_1^a & u_2^a & u_3^a \end{array}\right]\left[\begin{array}{c} v_1^a \\ v_2^a \\ v_3^a \end{array}\right]
  • Vector Product

    w=u×vwa=S(ua)va\vec{w}=\vec{u} \times \vec{v} \quad \equiv \quad \mathbf{w}^a=\mathbf{S}\left(\mathbf{u}^a\right) \mathbf{v}^a
  • Skew-symmetric operator

    S(u)=S(u)=[0u3u2u30u1u2u10]\quad \mathbf{S}(\mathbf{u})=-\mathbf{S}^{\boldsymbol{\top}}(\mathbf{u})=\left[\begin{array}{ccc}0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0\end{array}\right]

Coordinate transformations

Consider two bases {a}\{a\} and {b}\{b\}. Then

u=u1aa1+u2aa2+u3aa3=u1bb1+u2bb2+u3bb3u1b=ub1,u2b=ub2,u3b=ub3u1b=(u1aa1+u2aa2+u3aa3)b1,u2b=(u1aa1+u2aa2+u3aa3)b2,u3b=(u1aa1+u2aa2+u3aa3)b3\begin{gathered} \vec{u}=u_1^a \vec{a}_1+u_2^a \vec{a}_2+u_3^a \vec{a}_3=u_1^b \vec{b}_1+u_2^b \vec{b}_2+u_3^b \vec{b}_3 \\ u_1^b=\vec{u} \cdot \vec{b}_1, \quad u_2^b=\vec{u} \cdot \vec{b}_2, \quad u_3^b=\vec{u} \cdot \vec{b}_3 \\ u_1^b=\left(u_1^a \vec{a}_1+u_2^a \vec{a}_2+u_3^a \vec{a}_3\right) \cdot \vec{b}_1, \\ u_2^b=\left(u_1^a \vec{a}_1+u_2^a \vec{a}_2+u_3^a \vec{a}_3\right) \cdot \vec{b}_2, \\ u_3^b=\left(u_1^a \vec{a}_1+u_2^a \vec{a}_2+u_3^a \vec{a}_3\right) \cdot \vec{b}_3 \end{gathered}
[u1bu2bu3b]=[(a1b1)(a2b1)(a3b1)(a1b2)(a2b2)(a3b2)(a1b3)(a2b3)(a3b3)][u1au2au3a]\left[\begin{array}{l} u_1^b \\ u_2^b \\ u_3^b \end{array}\right]=\left[\begin{array}{lll} \left(\vec{a}_1 \cdot \vec{b}_1\right) & \left(\vec{a}_2 \cdot \vec{b}_1\right) & \left(\vec{a}_3 \cdot \vec{b}_1\right) \\ \left(\vec{a}_1 \cdot \vec{b}_2\right) & \left(\vec{a}_2 \cdot \vec{b}_2\right) & \left(\vec{a}_3 \cdot \vec{b}_2\right) \\ \left(\vec{a}_1 \cdot \vec{b}_3\right) & \left(\vec{a}_2 \cdot \vec{b}_3\right) & \left(\vec{a}_3 \cdot \vec{b}_3\right) \end{array}\right]\left[\begin{array}{l} u_1^a \\ u_2^a \\ u_3^a \end{array}\right]

Coordinate transformation matrix:

ub=Cabua\mathbf{u}^b=\mathbf{C}_a^b \mathbf{u}^a

Coordinate transformation matrices are orthogonal:

Cab(Cab)=ICba=(Cab)1=(Cab)\mathbf{C}_a^b\left(\mathbf{C}_a^b\right)^{\top}=\mathbf{I} \quad \mathbf{C}_b^a=\left(\mathbf{C}_a^b\right)^{-1}=\left(\mathbf{C}_a^b\right)^{\top}

1st order Tensors

A magnitude whose coordinates in different bases are linearly related according to

uib=jCijujau_i^b=\sum_j C_{i j} u_j^a

where CijC_{i j} are the elements of the coordinate transformation matrix, is called a vector or first order tensor. Hence we call u,v\vec{u}, \vec{v} \quad the tensor forms

2nd order Tensors

A second-order tensor allows transforming one vector into another. Examples Cross-product tensor, Su:w=Suv(u×v)\vec{S}_u: \quad \vec{w}=\vec{S}_u \cdot \vec{v} \quad(\equiv \vec{u} \times \vec{v}) Inertia tensor, Ic:Lc=Icω\quad \vec{I}_c: \quad \vec{L}_c=\vec{I}_c \cdot \vec{\omega} Think of the tensor "." as an operation that maps a vector into another. When a 2nd 2^{\text {nd }} order tensor is expressed in a basis, it becomes a 3×33 \times 3 matrix.

When a 2nd 2^{\text {nd }} order tensor is expressed in a basis, it becomes a matrix:

Su:w=Suv(u×v)wa=S(ua)vaS(ua)=[0u3au2au3a0u1au2au1a0]\begin{gathered} \vec{S}_u: \quad \vec{w}=\vec{S}_u \cdot \vec{v} \quad(\equiv \vec{u} \times \vec{v}) \\ \mathbf{w}^a=\mathbf{S}\left(\mathbf{u}^a\right) \mathbf{v}^a \\ \mathbf{S}\left(\mathbf{u}^a\right)=\left[\begin{array}{ccc} 0 & -u_3^a & u_2^a \\ u_3^a & 0 & -u_1^a \\ -u_2^a & u_1^a & 0 \end{array}\right] \end{gathered}

Tensor operations are independent of the basis in which the vectors are expressed. Matrix forms are always related to a basis.

uv(ua)Tvaw=u×vwa=S(ua)va\begin{array}{rll} \vec{u} \cdot \vec{v} & \equiv & \left(\mathbf{u}^a\right)^T \mathbf{v}^a \\ \vec{w}=\vec{u} \times \vec{v} & \equiv & \mathbf{w}^a=\mathbf{S}\left(\mathbf{u}^a\right) \mathbf{v}^a \end{array}

Reference Frame & Coordinate Systems

A reference frame is perspective from which the motion of a body or an object is described by an observer. A reference frame can be defined by a set of at least 3 non-co-linear points in space that are rigidly connected.

A coordinate system is a mathematical entity that allows us to establish a one-to-one correspondence between vector magnitudes and scalars called coordinates. A basis defines a coordinate system. Therefore, a reference frame is not the same as a coordinate system, one is physical and the other is mathematical.

We will denote reference frames by A,B\mathcal{A}, \mathcal{B} and bases associated with reference frames by {a},{b}\{a\},\{b\}

Time-derivative of a vector

The time derivative of a scalar magnitude is independent of the reference frame in which the magnitude is observed. The time derivative of a vector magnitude depends, in general, on the reference frame in which the magnitude is observed. We will use a notation that indicates this explicitly by using a left superscript:

Adrdt=limΔt0Ar(t+Δt)r(t)Δt\frac{\mathcal{A} d \vec{r}}{d t}=\lim _{\Delta t \rightarrow 0}^{\mathcal{A}} \frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}

In general,

Adr dt≢BBr dt\frac{\mathcal{A}_{\mathrm{d}} \vec{r}}{\mathrm{~d} t} \not \equiv \frac{\mathcal{B}^{\mathcal{B}} \vec{r}}{\mathrm{~d} t}

(Rate of) Transport Theorem (TT)

Theorem 1 (Rate of Change Transport Theorem): Consider the scenario depicted in the figure, and assume that B\mathcal{B} only rotates with respect of A\mathcal{A}. Then there exist a unique vector ωB/A\vec{\omega}_{\mathcal{B} / \mathcal{A}} called the angular velocity of B\mathcal{B} with respect of A\mathcal{A} such that This formula is key to derive kinematic models. We will be using it a lot!

Addition of angular velocities

Adu dt=Bdu dt+ωB/A×u,Bdu dt=Cdu dt+ωC/B×u,Cdu dt=Ddu dt+ωD/C×u.Adu dt=Ddu dt+(ωD/C+ωC/B+ωB/A)×uωD/A=ωD/C+ωC/B+ωB/A\begin{gathered} \frac{\mathcal{A}_{\mathrm{d} u}}{\mathrm{~d} t}=\frac{\mathcal{B}_{\mathrm{d} u}}{\mathrm{~d} t}+\vec{\omega}_{\mathcal{B} / \mathcal{A}} \times \vec{u}, \\ \frac{\mathcal{B}_{\mathrm{d}} \vec{u}}{\mathrm{~d} t}=\frac{\mathcal{C}_{\mathrm{d} \vec{u}}}{\mathrm{~d} t}+\vec{\omega}_{\mathcal{C} / \mathcal{B}} \times \vec{u}, \\ \frac{\mathcal{C}_{\mathrm{d} u}}{\mathrm{~d} t}=\frac{\mathcal{D}_{\mathrm{d} u}}{\mathrm{~d} t}+\vec{\omega}_{\mathcal{D} / \mathcal{C}} \times \vec{u} . \\ \frac{\mathcal{A}_{\mathrm{d}} \vec{u}}{\mathrm{~d} t}=\frac{\mathcal{D}_{\mathrm{d} \vec{u}}}{\mathrm{~d} t}+\left(\vec{\omega}_{\mathcal{D} / \mathcal{C}}+\vec{\omega}_{\mathcal{C} / \mathcal{B}}+\vec{\omega}_{\mathcal{B} / \mathcal{A}}\right) \times \vec{u} \\ \vec{\omega}_{\mathcal{D} / \mathcal{A}}=\vec{\omega}_{\mathcal{D} / \mathcal{C}}+\vec{\omega}_{\mathcal{C} / \mathcal{B}}+\vec{\omega}_{\mathcal{B} / \mathcal{A}} \end{gathered}

Note how the subscript notation works like fraction multiplications.

Position

The position vector denoted by rP/Ar_{P/A} indicates “the position of the point P with respect to the point A.”

Velocity